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OVERVIEW

1. Review: language models and 𝑛-gram models

2. Super-fast summary of neural networks

3. Recurrent neural networks (RNNs)

4. Encoder–decoder models

5. Attention

6. Transformers

7. ???

8. Make ChatGPT

9. Get fired from OpenAI lol

Goal

Cover the high-level basics of 

modern language models



REVIEW: WHAT IS A LANGUAGE 
MODEL?

• A language model (LM) is a system that 
calculates probabilities for sequence of words 
based on a corpus of text data

• Recall Austen vs. Melville: how likely was a text to 
contain the word “she”?

• We’ll focus on the use of LMs for novel text 
generation (cf. ChatGPT)

• Given a sequence of words, what’s the most likely 
next word?



N-GRAM MODELS…

• Recall that an 𝑛-gram model predicts the next 

word using the previous 𝑛 − 1 words:

𝑃 𝑤𝑘+1 𝑤𝑘 , 𝑤𝑘−1, … ,𝑤𝑘−𝑛+2)

• How did we use 𝑛-grams to generate novel 

text in HW 2?



… AND THEIR LIMITATIONS

• 𝑛-gram models have built-in extreme short-

term memory loss!

• If we only look at the previous 𝑛 − 1 words, what 

happens as we generate more and more words?

• How might this memory loss be reflected in the 

generated novel text?

• Why not increase 𝑛? → Sparseness problem ☝️🤓 

Actually…



NEURAL NETWORKS SPEEDRUN 
(ANY%)

• A neural network (NN) is an ML model 

consisting of a graph of “neurons”

• Input starts as a vector of numbers in the input 

layer, is transformed in the intermediate 

“hidden” layers, and is converted to a vector 

of output values in the output layer

• In the diagrams on the right, 𝑓 is a non-linear 

activation function

Neural Network with 2 Hidden Layers

Neuron



NEURAL NETWORKS SPEEDRUN 
(ANY%)

• NNs “learn” by updating the weights of their 

edges using backpropagation

• Run an input through the NN

• Compare the model’s output to the correct training 

output

• Propagate calculated changes backward through the 

model to update weights



VANILLA NEURAL NETWORKS 
AS LANGUAGE MODELS

• Words are encoded as vectors (remember 

word embeddings?) and concatenated to form 

a single input vector

• We don’t need to store any 𝑛-grams, so this 

fixes the sparseness problem

• However, the input size must be fixed, so we 

still can’t support variable-length inputs

• 1 out of 2 ain’t good enough



HOW CAN WE SUPPORT VARIABLE-
LENGTH INPUTS?

• Suppose we can accomplish the following:

• Encode input words as a sequence of word vectors rather than a 

single vector for all words

• Pass input words into the NN one at a time and then have it predict 

the next word

• Then the NN could handle any number of input words!

• But we need a NN model that supports repeated passes…



RECURRENT 
NEURAL 

NETWORKS

• A recurrent neural 

network (RNN) has its 

nodes’ output affect 

those nodes own future 

inputs

• RNNs use the outputs of 

previous steps along with 

the input of the current 

step

One recurrent hidden layer is interpreted 

as multiple hidden layers across time



RNNS ARE 
PRETTY NEAT

• Can process sequential 

data

• “Deeper” networks 

with fewer layers

• Has “memory” of 

previous inputs
What are some applications of

these RNN structures?



USING RNNS 
FOR TEXT 

GENERATION

• LMs take a sequence of 

words and output 

another sequence of 

(novel) words

• We want to process all 

the input words before 

producing any outputs



ENCODER–
DECODER 
MODELS

• Encoder–decoder 
models consist of two 
RNNs:

• The encoder (green) 
processes the input into a 
vector of contextual info

• The decoder (orange) 
processes the encoding to 
generate the output one 
word at a time

Encoder–decoder models were first introduced for 

machine translation, but they’ve also proven 

themselves effective at other tasks



TWO BIG PROBLEMS

• The bottleneck problem: the encoding holds 
context for the whole input, but not all info is 
equally relevant

• The vanishing gradient problem: as changes 
propagate backward through time, the signal 
can get weaker and weaker

• We need a way to let the model focus on 
specific parts of the input, even those 
processed far back in time

Gradients can shrink to 0 as it propagates 

through more and more layers



ATTENTION!

• Attention is a mechanism that allows a model 

to directly focus on parts of the input

• Attention mechanisms take a vector of values 

(e.g., hidden states in the encoder) and weights 

them based on a query vector (e.g., hidden states 

in the decoder)

• At every step, the query can access info for all 

inputs, focusing on the most important parts



PAYING 
ATTENTION

• Pass inputs through the 

encoder and produce 

the context vector

• Calculate attention 

scores for each input

• Weight attention 

scores based on the 

context vector
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Abigail See



PAYING 
ATTENTION 

(CONT.)

• Repeat for every step 

of the decoder

• This makes it so that 

the decoder focuses on 

relevant parts of the 

input at every step
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APPLYING 
ATTENTION TO 

LMS

• Self-attention allows us to 

model dependencies 

within the input itself

• The inputs are processed 

by a self-attention layer, 

and then each processed 

by a vanilla NN

• Note that the input size is 

fixed again!



TRANSFORMERS
(THE BORING KIND)

• The transformer was introduced in OpenAI’s 

now-famous paper “Attention is All You 

Need” (Vaswani et al, 2017)

• The trick: give up on RNNs completely for the 

encoder–decoder model

• Instead, have an encoder–decoder model of only 

attention mechanisms



ATTENTION 
SEEMS TO WORK

Attention is highest for 

sensible word relationships

Potential for anaphora 

resolution!

There is still a big tradeoff 

with this setup. What is it?



CHATGPT IS 
BUILT USING 

TRANSFORMERS

Transformer architecture diagram from 

OpenAI’s paper introducing GPTs



AND ALL OF THIS… JUST TO PREDICT 
THE NEXT WORD

Now you just need a quadspillion dollars of  

VC funding to make your very own ChatGPT!

Thank you!



REFERENCES & 
FURTHER 
READING

• Speech and Language Processing, 3rd ed draft, Daniel Jurafsky & James 

H. Martin

• Wikipedia (pretty much every keyword in this presentation has its 

own article)

• Na-Rae’s lecture slides (see Lecture 7 for discussion on 𝑛-gram 

LMs)

• YouTube series on neural networks by Grant Sanderson (aka 

3Blue1Brown)

• Lecture slides for CS 1678 (Intro to Deep Learning) by Dr.  Adriana 

Kovashka

• “Effective Approaches to Attention-based Neural Machine 

Translation” (Luong, Pham, and Manning, 2015), which introduced 

attention mechanisms for machine translation

• “Attention is All You Need” (Vaswani et al, 2017), which introduced 

the concept of transformer models

• OpenAI’s 2018 paper “Improving Language Understanding by 

Generative Pre-Training”, which introduced GPT, and its 

accompanying article

https://youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://people.cs.pitt.edu/~kovashka/cs1678_fa21/
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1706.03762
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://openai.com/research/language-unsupervised
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