
DEEP LEARNING LANGUAGE MODELS:
BEYOND N-GRAMS

LING 1330/2330: Introduction to Computational Linguistics

Tianyi Zheng

November 30, 2023

OVERVIEW

1. Review: language models and 𝑛-gram models

2. Super-fast summary of neural networks

3. Recurrent neural networks (RNNs)

4. Encoder–decoder models

5. Attention

6. Transformers

7. ???

8. Make ChatGPT

9. Get fired from OpenAI lol

Goal

Cover the high-level basics of

modern language models

REVIEW: WHAT IS A LANGUAGE
MODEL?

• A language model (LM) is a system that
calculates probabilities for sequence of words
based on a corpus of text data

• Recall Austen vs. Melville: how likely was a text to
contain the word “she”?

• We’ll focus on the use of LMs for novel text
generation (cf. ChatGPT)

• Given a sequence of words, what’s the most likely
next word?

N-GRAM MODELS…

• Recall that an 𝑛-gram model predicts the next

word using the previous 𝑛 − 1 words:

𝑃 𝑤𝑘+1 𝑤𝑘 , 𝑤𝑘−1, … ,𝑤𝑘−𝑛+2)

• How did we use 𝑛-grams to generate novel

text in HW 2?

… AND THEIR LIMITATIONS

• 𝑛-gram models have built-in extreme short-

term memory loss!

• If we only look at the previous 𝑛 − 1 words, what

happens as we generate more and more words?

• How might this memory loss be reflected in the

generated novel text?

• Why not increase 𝑛? → Sparseness problem ☝️🤓

Actually…

NEURAL NETWORKS SPEEDRUN
(ANY%)

• A neural network (NN) is an ML model

consisting of a graph of “neurons”

• Input starts as a vector of numbers in the input

layer, is transformed in the intermediate

“hidden” layers, and is converted to a vector

of output values in the output layer

• In the diagrams on the right, 𝑓 is a non-linear

activation function

Neural Network with 2 Hidden Layers

Neuron

NEURAL NETWORKS SPEEDRUN
(ANY%)

• NNs “learn” by updating the weights of their

edges using backpropagation

• Run an input through the NN

• Compare the model’s output to the correct training

output

• Propagate calculated changes backward through the

model to update weights

VANILLA NEURAL NETWORKS
AS LANGUAGE MODELS

• Words are encoded as vectors (remember

word embeddings?) and concatenated to form

a single input vector

• We don’t need to store any 𝑛-grams, so this

fixes the sparseness problem

• However, the input size must be fixed, so we

still can’t support variable-length inputs

• 1 out of 2 ain’t good enough

HOW CAN WE SUPPORT VARIABLE-
LENGTH INPUTS?

• Suppose we can accomplish the following:

• Encode input words as a sequence of word vectors rather than a

single vector for all words

• Pass input words into the NN one at a time and then have it predict

the next word

• Then the NN could handle any number of input words!

• But we need a NN model that supports repeated passes…

RECURRENT
NEURAL

NETWORKS

• A recurrent neural

network (RNN) has its

nodes’ output affect

those nodes own future

inputs

• RNNs use the outputs of

previous steps along with

the input of the current

step

One recurrent hidden layer is interpreted

as multiple hidden layers across time

RNNS ARE
PRETTY NEAT

• Can process sequential

data

• “Deeper” networks

with fewer layers

• Has “memory” of

previous inputs
What are some applications of

these RNN structures?

USING RNNS
FOR TEXT

GENERATION

• LMs take a sequence of

words and output

another sequence of

(novel) words

• We want to process all

the input words before

producing any outputs

ENCODER–
DECODER
MODELS

• Encoder–decoder
models consist of two
RNNs:

• The encoder (green)
processes the input into a
vector of contextual info

• The decoder (orange)
processes the encoding to
generate the output one
word at a time

Encoder–decoder models were first introduced for

machine translation, but they’ve also proven

themselves effective at other tasks

TWO BIG PROBLEMS

• The bottleneck problem: the encoding holds
context for the whole input, but not all info is
equally relevant

• The vanishing gradient problem: as changes
propagate backward through time, the signal
can get weaker and weaker

• We need a way to let the model focus on
specific parts of the input, even those
processed far back in time

Gradients can shrink to 0 as it propagates

through more and more layers

ATTENTION!

• Attention is a mechanism that allows a model

to directly focus on parts of the input

• Attention mechanisms take a vector of values

(e.g., hidden states in the encoder) and weights

them based on a query vector (e.g., hidden states

in the decoder)

• At every step, the query can access info for all

inputs, focusing on the most important parts

PAYING
ATTENTION

• Pass inputs through the

encoder and produce

the context vector

• Calculate attention

scores for each input

• Weight attention

scores based on the

context vector

Sequence-to-sequencewithattention

E
n
co

d
e
r

R
N

N
<START>il a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

A
tt
e
n
tio

n

sc
o
re

s

Attention

output
Concatenate attention output

with decoder hidden state, then

use to compute � 1 as before

� 1

he

Source sentence (input)
Abigail See

PAYING
ATTENTION

(CONT.)

• Repeat for every step

of the decoder

• This makes it so that

the decoder focuses on

relevant parts of the

input at every step

Sequence-to-sequencewithattention

E
n
co

d
e
r

R
N

N
<START> heil a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

sc
o
re

s

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

Attention

output

� 2

hit

Sometimes we take the

attention output fromthe

previous step, and also

feed it into the decoder

(along with the usual

decoder input).

Source sentence (input)
Abigail See

APPLYING
ATTENTION TO

LMS

• Self-attention allows us to

model dependencies

within the input itself

• The inputs are processed

by a self-attention layer,

and then each processed

by a vanilla NN

• Note that the input size is

fixed again!

TRANSFORMERS
(THE BORING KIND)

• The transformer was introduced in OpenAI’s

now-famous paper “Attention is All You

Need” (Vaswani et al, 2017)

• The trick: give up on RNNs completely for the

encoder–decoder model

• Instead, have an encoder–decoder model of only

attention mechanisms

ATTENTION
SEEMS TO WORK

Attention is highest for

sensible word relationships

Potential for anaphora

resolution!

There is still a big tradeoff

with this setup. What is it?

CHATGPT IS
BUILT USING

TRANSFORMERS

Transformer architecture diagram from

OpenAI’s paper introducing GPTs

AND ALL OF THIS… JUST TO PREDICT
THE NEXT WORD

Now you just need a quadspillion dollars of

VC funding to make your very own ChatGPT!

Thank you!

REFERENCES &
FURTHER
READING

• Speech and Language Processing, 3rd ed draft, Daniel Jurafsky & James

H. Martin

• Wikipedia (pretty much every keyword in this presentation has its

own article)

• Na-Rae’s lecture slides (see Lecture 7 for discussion on 𝑛-gram

LMs)

• YouTube series on neural networks by Grant Sanderson (aka

3Blue1Brown)

• Lecture slides for CS 1678 (Intro to Deep Learning) by Dr. Adriana

Kovashka

• “Effective Approaches to Attention-based Neural Machine

Translation” (Luong, Pham, and Manning, 2015), which introduced

attention mechanisms for machine translation

• “Attention is All You Need” (Vaswani et al, 2017), which introduced

the concept of transformer models

• OpenAI’s 2018 paper “Improving Language Understanding by

Generative Pre-Training”, which introduced GPT, and its

accompanying article

https://youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
https://people.cs.pitt.edu/~kovashka/cs1678_fa21/
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1706.03762
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://openai.com/research/language-unsupervised

	Slide 1: Deep Learning Language Models: Beyond n-grams
	Slide 2: Overview
	Slide 3: Review: What is a language model?
	Slide 4: N-gram models…
	Slide 5: … and their limitations
	Slide 6: Neural Networks speedrun (any%)
	Slide 7: Neural Networks speedrun (any%)
	Slide 8: Vanilla NEURAL NETWORKS as language models
	Slide 9: How can we support variable-length inputs?
	Slide 10: Recurrent Neural Networks
	Slide 11: RNNs are pretty neaT
	Slide 12: Using RNNs for text generation
	Slide 13: Encoder–decoder models
	Slide 14: Two BIG PROBLEMS
	Slide 15: Attention!
	Slide 16: Paying attention
	Slide 17: Paying attention (cont.)
	Slide 18: Applying attention to LMs
	Slide 19: Transformers (the boring kind)
	Slide 20: Attention seems to work
	Slide 21: ChatGPT is built using transformers
	Slide 22: And all of this… just to predict the next word
	Slide 23: References & Further reading

